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Problem 1-1
(a)

Table 1: Solar System Model Parameters, 1 mm ≈ 1300 km

Solar System Diameter Distance Model Object
Object
Sun 1.1 m – very large beach ball
Mercury 3.7 mm 45 m ball berring
Venus 9.5 mm 83 m marble (slightly smaller)
Earth 10 mm 115 m marble
Mars 5.2 mm 173 m large ball berring
Asteroids ≤ 0.8 mm 330± 100 m pinch of sand and dust
Jupiter 110 mm 600 m softball
Saturn 92 mm 1.1 km baseball,

thin paper plate (rings)
Uranus 40.1 mm 2.2 km ping-pong ball
Neptune 38.8 mm 3.5 km 20th cent. ping-pong ball
Pluto, Eris 1.7 mm 4.5, 10 km small beads
Other TNOs ≤ 1.2 mm mostly 4 – 7 km thimbleful of sand & dust
Proxima Cen. 160 mm 29,000 km volleyball

One may argue that the table should include natural satellites of the planets
as well, especially if Pluto and the asteroids are listed (the Galilean satellite
Ganymede, for example, is slightly larger than Mercury and much larger than
Pluto).

(b) The distance to Proxima Centari, 4 ly, at this scale is more than twice
the diameter of the Earth! Thus, scale models are impractical.

Problem 1-4
(b) The Earth must rotate once more than the number of solar days since

it has a prograde rotation and orbit. So the number of rotations per orbit is
366.24. The sidereal day, then is...

Time of Orbit

Number of Sidereal days per year

=
(365.24d× 24h)

366.24d
= 23.9345h = 23h 56m 4s.

(c) A retrograde orbit adds a solar day to the year. For each day in its orbit,
a planet with retrograde spin needs a little less than a full rotation for the same
part of the planet to be directly sub-solar. This is the opposite of the prograde
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case, where the same portion of the planet must rotate a little more following
a sidereal rotation to reach the sub-solar position. Hence, a retrograde planet
that rotates once per year sidereally has 2 solar days per year.

(d) The angular velocity of the Sun with respect to a fixed point on the
planet is determined by the sidereal rotation velocity plus a factor involving the
movement of the planet with respect to the Sun. If the planet is moving in the
prograde direction, the Sun appears to move in the opposite angular direction,
so that if the planet was sitting still,

ω� = −ωsidereal

while for prograde orbits, the apparent motion of the planet slows the motion
of the Sun for a fixed point on the planet, so that

ω� = ωorbit − ωsidereal.

From here, using the relation ω = 2π
P , where P is the period of sidereal or solar

rotation or orbit,
2π

P�
=

2π

Psid
− 2π

Porb

and

P� =
1

1
Psid
− 1

Porb

=
PsidPorb

Psid − Porb
.

For Mercury, Psid = 58.65d, Porb = 87.969d, so P� = 176d.
Likewise...
Venus:

P� = 116.7d

Note that Venus is in a retrograde rotation, and so has a negative value for
the sidereal day in the formula.

Mars:
P� = 24.67h

Jupiter:
P� = 0.410080d, Psid = 0.410042d

(e) To first order, the Earth, or any planet, spins at a fixed rate with respect
to the background stars. The sidereal day, then, is of fixed length (for non-
geological time scales, and neglecting tidal effects). The orbit of a planet, as
we’ve seen, affects ω�, so that the longest days of the year for a prograde
orbit and rotation occur when ωorbit is greatest, i.e. at the Earth’s perihelion
(neglecting inclination and hemispherical effects).

Using Kepler’s laws... (here the ω’s are obital)

a(1− e) = closest distance ≈ 0.983AU

ωperi rperi = ā ω̄

ωperi =
ā

rperi
ω̄ = 1.017 ω̄

(Psid − P̄�) · 1.017 = 0.0666h

0.0666h + 23.9345h = 24.0011h
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4 seconds longer...
Note: The Earth’s obliquity causes variations in the rate of apparent motion

of the Sun along the equator, which also produce variations in the length of the
day. The equation of time accounts for both types of variations and enables
accurate calculation of the time using a sundial. See http://www.oarval.org/equation.htm
for additional information.

Problem 2-1
(a) To go into a heliocentric orbit, the ball must be moving at escape velocity

from the asteroid:

150 km/hr = 0.0417 km/s = 41.7 m/s

vesc =

√
2GM

R
, M =

4

3
πR3 · 3000, G = 6.67× 10−11 (in SI)

vesc =
√

8000πR2G = 41.7

R = 3.22× 104 m ≈ 32 km.

(b)
1

2
vo

2 − GM

R
= − GM

h+R

M = 4000πR3, h = 50 km

1

2
vo

2 −G4000πR2 = −G4000πR3

h+R

G4000πR2h− 1

2
vo

2R− 1

2
vo

2h = 0

R = 4.42× 104 m ≈ 44 km.

(c) Periapse distance ≈ Rasteroid. Periapse velocity ≈ 41.7 m/s. The lowest
energy orbit is a circular orbit, so e = 0 and ...

vc = 41.7 m/s =

√
GM

R

R ≈

√
41.7 m/s

2

4000πG
= 45.5 km.

Note that if the asteroid is spherically symmetric, a bound orbit is closed,
and the astronaut should prepare to duck. If the asteroid is irregular, then the
astronaut should stand at the point farthest from the center.

Problem 2-2
Some useful numbers:
Distances from Sun; gravity (g); mass; radius; gravitational parameter (GM)
Earth: 1 AU (1.5 ×1011 m); 9.81 m/s2; 5.972×1024 kg; 6378 km; 398,600

km3s−2

Mars : 1.52 AU (2.27 ×1011 m); 3.73 m/s2; 6.421 ×1023 kg; 3395 km ; 42,828
km3s−2
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The escape velocity is given by:
ve = (2GM/r)1/2 where G is the gravitational constant, M the mass of the

planet being escaped from, r is the distance between the center of the planet
and the point at which escape velocity is being calculated, here the top planet’s
atmosphere (r = Rp = radius of the planet)

Mars: ve = 5.022 km/s
Earth ve = 11.18 km/s

(a) Mars to Earth
The orbital velocity of Mars (circular orbit approximation) is vc = (GM�/1.52AU)1/2 =

24.16 km/s
To go from the orbit of Mars to Earth, the semimajor axis must be the

average of those of Mars and Earth: (1+1.52)AU/2 = 1.26 AU (1.496 ×108 +
2.274 ×108 km) / 2 = 1.888 ×108 km

The specific (per unit mass) energy must, therefore, be 1.52/1.26 = 1.2063
≈ 1.2 times as large as that of a circular orbit at Mars’s orbit. The specific
potential energy is the same as that of a circular orbit at Mars’s orbit, −v2

c .
The specific kinetic energy of the particle is 0.5v2

p, so 0.5v2
p − v2

c = −0.6v2
c

vp = (0.8v2
c )1/2

The velocity relative to Mars is thus v∞ = vc − vp = 2.55 km/s
Therefore to escape Mars with this velocity, it must leave the martian at-

mosphere at a transfer velocity vt given by: vt = (v2
∞ + v2

e)1/2 = 5.63 km/s

(b) The orbit is the same as for the minimum energy trajectory from Earth
to Mars, so by the calculation given for part (c): vimpact = 11.67 km/s

(c) Earth to Mars
The orbital velocity of Earth (circular orbit approximation) is:
vc = (GM�/1AU)1/2 = 29.78 km/s.
To go from Earth’s orbit to Mars, the semimajor axis must be the average

of those of Earth and Mars: (1+1.52)AU/2 = 1.26 AU
The specific energy must, therefore, be 1/1.26 times that of a circular orbit,

so 0.5v2
p − v2

c = −v2
c/2.52

vp = (2− (1/1.26))1/2vc = 1.098vc
The velocity relative to Earth is thus v∞ = vp − vc = 2.93 km/s
vt = (v2

p + v2
e)1/2 = 11.67 km/s

(d) The orbit is the same as for the minimum energy trajectory from Mars
to Earth, so vimpact = 5.63 km/s.

(e) Planetary rotation reduces the minimum required energy, because the
atmosphere is at moving (rotating with the planet) and at optimal times its mo-
tion is in the correct direction; maximum motion is at the equator. Eccentricity
also reduces the minimum required velocity, with the preferred configuration
being escape when the source planet at periapse (where its orbital velocity is
largest, so greatest change in orbital energy for a given velocity relative to the
planet) and impact when the destination planet is closest to the semimajor axis
of the outer planet (this requires optimal alignment of the periapse angles of
the two planets). Inclination has negligible effect since the inclinations are small
and effects are second-order in inclination.
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Problem 2-14
As the Moon orbits the Earth in the prograde direction with an orbital

period longer than 1 siderial day, Ps = (P−1
r − P−1

o )−1 = ((366.24/365.24) −
(27.32)−1)−1 = 1.035 days = 24.84 hours.

Problem 2-16
(a) The force due to tides is linearly proportional to the mass of the per-

turber, so the height of the tide would be reduced by a factor of 2.
(b) The height of the tide is proportional to the mass of the perturber

divided by the cube of the distance. Thus, the Sun produces tides 0.41 times
as large as those of the Moon. So since the Moon’s tides drop by a factor of 2
and the Sun’s don’t change, the total tides are 0.91/1.41 = 0.65 times as large
(reduced by 35%).
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Problem 3-4 ∑
〈EG〉 = −Gm1m2

r

−2

2∑
i=1

〈EK〉 = −2

2∑
i=1

1

2
mivcirc

2

vi,circ =

√
GM

r

m3−i

M

⇒ −2
∑
〈EK〉 =

1

2
m1v1

2 +
1

2
m2v2

2

= −2
1

2

GM

rM2
[m2

2m1 +m1
2m2] = −2

1

2

GM2

rM2
m2m1

= −Gm1m2

r
=
∑
〈EG〉

Problem 3-7
(a) The hot big bang produced many particles that decayed into protons,

which are H nuclei. Most of these protons never fused into heavier elements.
He has two protons, and thus was the first element formed by fusion of H after
the big bang and also in stars. (Also, since no element with atomic mass 5 or 8
is stable, it is very difficult to produce heavier elements by combining 4He with
either other 4He or with protons.)

(b) C can be formed in dense environments by fusion of 3 alpha particles
(4He nuclei), and O by addition of another alpha particle or 4 protons (2 of
which subsequently decay into neutrons). C and O have more binding energy
per nucleon, therefore are more stable, especially at high temperature, than are
Li, Be & B.

(c) 56Fe has more binding energy per nucleon than any other isotope, i.e.,
it is the most stable nucleus.

(d) Only light elements were produced in the big bang, and since iron is
the most stable element, only endothermic nuclear reactions produce heavier
elements.

(e) Odd atomic number generally have less binding energy per nucleon than
do neighboring elements of even atomic number, i.e., even elements are more
stable than odd ones.
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Problem 4-6
Different parts of a real planet have different temperatures, T ; therefore they

would have different peaks on the emission-frequency curve. Thus, the spectrum
of emitted radiation from a planet is broader than a blackbody spectrum.

Problem 4-9
(a) Use Equation (4.17) and Tables E.9 and E.10:

Teq =

(
F�
r2
AU

(1−Ab)
4εσ

)1/4

• Earth

Ab = 0.306 and rAU = 1⇒ T⊕ = 261.2 K

• Jupiter

Ab = 0.343 and rAU = 5.2⇒ TJ = 113 K

(b) Use equation (4.8):

λmax =
2.89× 10−3

T
m

• For Earth

T⊕ = 255.3 K⇒ λmax = 11.1 µm

• For Jupiter

TJ = 113 K⇒ λmax = 25.7 µm

From Figure 4.1, it is apparent that these peaks are in the middle of the
infrared. Astronomers call this region the ‘mid-infrared’.

Problem 4-14
(a) Large sheets of ice would be much brighter than oceans, land, or vege-

tation and that would increase the albedo.
(c) Many answers are reasonable here. Say we choose 0.8; then by equation

(4.17) we get 191 K or –82 C.
(d) As the world got colder more ice would form and the albedo would

keep increasing. Ignoring any other feedback effects this would be an unstable
change. In the real world as ice freezes volcanic CO2 would still be pumped in
to the environment and not lost to weathering, eventually the greenhouse effect
would overcome the albedo effect.

Problem 4-17
(a) Substituting into equation (4.17) gives Teq = 167.8 K. When the planet

has no internal sources of heat, Teff = Teq.
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(b) At the edge of the atmosphere, optical depth τ = 0, T 4
0 = 0.5T 4

eff . Thus
T0 = 141.1 K.

(c) The temperature at a given optical depth in the atmosphere is given by

T 4(τ) = T 4
0 (1 +

3

2
τ).

At τ = 2/3 we have T 4 = 2T 4
0 = T 4

eff . Thus the continuum emergent flux
appears to emerge with a spectrum characteristic of Teff .

(d) Using the above relation and setting τsurf = 10 we have T 4
surf = 16T 4

0 or
Tsurf = 2T0 = 282 K.
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Problem 5-5
For gases, by the ideal gas equation, density is proportional to gas particle

mass. Molecular nitrogen has a molar mass of 28, and molecular oxygen has a
molar mass of 32. A pure oxygen-nitrogen mixture would have a molar mass
between 28 and 32. Water vapor has a molar mass of 18, which makes it lighter
and therefore less dense than any nitrogen-oxygen mixture. Thus, if we replace
a portion of the N2 – O2 mixture in a parcel of air with water vapor, the parcel
would rise since the density would be lower.

Problem 5-10
Ozone is formed in a reaction that begins with the photodissociation of

molecular oxygen: O2 +hν → O+O. Ozone is then formed by 3-body reactions:
O + O2 + M → O3 + M. At very low pressures, three-body reactions are very
rare and O3 production is unlikely. At high pressures, the column of gas above
absorbs most of the incident UV flux. Thus, it seems reasonable to expect
that there is some altitude where both ozone production can proceed efficiently
because there are sufficient collisions and there is adequate UV flux to drive the
reaction.

Problem 5-18
(a) CO2 in the atmosphere is absorbed by the oceans, and dissolved into

water as carbonic acid promotes the weathering of rocks, thereby forming car-
bonate. The rate of both reactions are dependent on the temperature. If the
temperature increases, the reaction rates increase thereby decreasing the amount
of CO2 in the atmosphere. Since CO2 is a greenhouse gas, a decrease of CO2

causes a decrease in the surface temperature as less heat is trapped in the at-
mosphere. Thus, the surface temperature is restored. Conversely a fall in tem-
perature leads to more sluggish reactions and a gradual buildup in atmospheric
CO2 and eventual warming.

(b) Deposits of carbonate rocks on the ocean floor may be subducted in
subduction zones, thus releasing the carbon dioxide to the atmosphere through
island arc volcanic activity. Likewise extensive continental volcanism, such as
widespread basaltic lava flows, can release carbon dioxide trapped in continental
carbonates. In these cases, the releases of carbonate art not necessarily coupled
to the climate.

Problem 5-19
(a) Soot absorbs sunlight, and it has a much higher optical depth to visi-

ble radiation from the Sun than to the longer-wavelength thermal IR radiation
from Earth, so the radiation is absorbed above an altitude where significant
greenhouse warming occurs. When sunlight is absorbed so high in the atmo-
sphere, the energy does not reach the surface and therefore the surface cools.
This resembles the surface cooling caused by increased cloud cover or simply
a cloud passing in front of the Sun. This is often called the “anti-greenhouse
effect.” The anti-greenhouse effect resembles the cooling caused by increasing
albedo, but differs from albedo in that sunlight is absorbed and then re-radiated
as infrared energy, rather than simply being reflected.
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Problem 6-12
(a) This just entails tabulating the acceleration of gravity g and escape

velocity for each world. Then to compute the exit velocity, just equate the
kinetic energy at time t = 0 with the potential energy at the height of the
ballistic arc when v = 0, so mgy = 0.5mv2. Velocities range from 31 m/s for
old faithful to 240 m/s for Enceladus to 450 m/s for Io. Then it is easy to
express as a fraction of escape velocity.

(b) There is a big spread in ratios, so it is probably not the same mechanism
that is producing each type of geyser (which we know to be the case). Also,
ballistics is not the only mechanism propelling the geysers.

Problem 6-14
(a) Using eq. (6.6), and inserting numerical values with SI units: 2 ×

30000.11 × 3500−0.33 × 9.8−0.22 × 5000.12 × (0.5 × 3000 × (4π/3)5003 × (1.5 ×
104)2)0.22 × (2−1/2)1/3 = 1.06× 104 m = 10.6 km.

Problem 6-15
(a) A meteoroid is slowed substantially if it passes through its mass of gas.

For Earth, the mass per unit area of the atmosphere is slightly more than
104 kg/m3, so an iron meteoroid smaller than ∼ 1 meter in radius is slowed
appreciably.

(b) For Venus, the mass per unit area of the atmosphere is slightly more
than 106 kg/m3, so an iron meteoroid smaller than ∼ 100 meters in radius is
slowed appreciably.

(c) Minimum crater sizes can be estimated using eq. (6.6) with sini = 1 and
the above estimates for impactor mass and an impact speed of 10 km/s. For
Earth, a 1 meter radius iron body produces a crater ∼ 80 meters in diameter.
For Venus, a 100 meter radius iron body produces a crater ∼ 3 km in diameter.
Craters smaller than these radii are rare.

Problem 6-16
(e) Random statistical variations limit the precision to which craters can be

used to determine relative dates, especially if the number of craters is small.
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Problem 7-1
The ratio can be computed using the blackbody radiation formula (eq. 4.11):

(4500/5800)4 = 0.36.

Problem 7-6
Many answers are acceptable, for instance:

(a) Satellite communication systems are damaged or destroyed by greater
radiation above atmosphere. Radio communication would be affected by change
in the ionosphere.

(b), (c) More radiation reaches surface, so radiation-intolerant organisms
die and mutation rate increases. Organisms that use magnetic fields to orient
themselves or to navigate during migration adapt or die out.

Problem 8-4
(a) Jupiter and Saturn both emit substantially more energy than they absorb

from the Sun, implying large internal heat sources. Radiation and conduction
would require extremely large temperature gradients to transport enough energy
from the interiors of these planets to the region at which it could be radiated
to space, and such gradients would make the planets’ interiors convectively un-
stable. Convection only requires slightly super-adiabatic temperature gradients
to transport the required energy. Thus, in the regions of the planets’ envelopes
deeper than several optical depths to outgoing radiation, the temperature should
increase with depth approximately adiabatically.

(c) Uranus does not have a substantial internal heat source, so the temper-
ature gradient with depth could be shallower than the adiabatic rate.

Problem 9-8
(a) Neglecting the small variations of g within each atmosphere, atmospheric
mass can be calculated as:

M = P × 4πR2/g.

(Surface pressure multiplied by the area gives the force, divide by g to get mass.)
For Earth, using P = 101.3 kPa and R⊕ = 6370 km, Matm = 5× 1018 kg.
For Venus, P = 9322 kPa, R = 6052 km, so Matm = 5× 1020 kg.
(b) A 3 km layer of water has the mass:
4πR2ρ∆R = 1.4× 1021 kg.
(c) Without considering water, the atmosphere of Venus is 100 times as

massive. Adding in the water content in the Earth’s oceans, Earth’s atmosphere
+ hydrosphere is about 3 times as massive as that of Venus.

Problem 9-9
There are many possible answers. The physical lines of evidence are the

small valley networks that appear to have formed by running water acting over
a long period of time. (The huge outflow channels, which seem to have formed
catastrophically, are not a good answer as they could form even under todays
climate if there was an appropriate source of water.) The best chemical evidence
for past water comes from the Mars rovers. There are many examples, but two
include the presence of sulfate-rich minerals (which required long-lasting soaking
in acidic water to form) and the presence of “concretions” or small marble-sized
mineral spheres that also form by soaking in water.
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Problem 10-4
(a) The global average flux at Titan is 1×1016÷9.52÷4 = 2.77×1013/m2/s.

(b) H2 escape flux = 2.77× 1013m2/s
C2H6 formation rate = 2.77× 1013 ÷ 2 = 1.38× 1013m2/s
CH4 destruction rate = 1.38× 1013m2/s.

(c) The number of moles of gas in a column of Titan’s atmosphere is:
N = 1.5× 105 ÷ 0.028÷ 140 = 3.83× 106 moles/m2.

The column density (the number of molecules in a column) of methane is:
0.05× 3.83× 106 × 6× 1023 = 1.15× 1029 CH4 molecules/m2.

The lifetime of the current reservoir of CH4 in Titan’s atmosphere is roughly:
1.15× 1029 ÷ 2.77× 1013 = 4.14× 1015 sec = 130 million years.

(d) 1.15× 1029 ÷ 2÷ 6× 1023 = 9.6× 104 moles/m2.
An alternative derivation is: 0.05× 3.83× 106 ÷ 2 = 9.6× 104 moles/m2.

(e) 180 meters.

(f): CH4: (bp) 111 K; (fp) 90.7 K
C2H6: (bp) 184.6 K; (fp) 90.4 K.

(g) Cassini-Huygens scientists expected to land in a liquid methane-ethane
“ocean” more than 200 m deep, because photochemical decomposition of methane
over 4.56 yrs would have left at least 180 m of liquid ethane at the surface. Imag-
ing in infrared wavelengths showed features that resembled rivers, lakes, oceans,
etc, but they actually found land, probably because not all the radar-dark fea-
tures that resembled lakes or seas are actually liquid bodies; smooth surfaces
could also look similar. However, there are actually hydrocarbon liquid lakes
on Titan, mostly at high latitudes.

Problem 11-1
Since the eccentricity of the Earth’s orbit is very small, we consider the orbit

to be circular with radius equal to 1 AU. Orbital velocity of Earth is therefore
given by:

v⊕ =

√
GM�
a⊕

= 29.8 km/s.

When the meteoroid approaches the Earth’s atmosphere, its potential energy
would be converted into kinetic energy resulting in the velocity of entry given
by:

ventry =
√
v2
∞ + v2

esc, (1)

where vesc is the escape velocity of Earth equal to 11.2 km/s.

(a) For a meteoroid with a similar orbit as Earth, v∞ = 0 giving ventry =
11.2 km/s.

(b) Inclination i = 180◦ gives v∞ = 2v⊕ = 59.6 km/s giving ventry = 60.6
km/s.
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Problem 11-8
The half-life of 234U (2.47 × 105 years) is much shorter than the age of

the Earth (≈ 4.55 Gyr). Thus, any 234U present now must be in dynamic
equilibrium with 238U.

dN234(t)
t

= N238(t)
γ238

− N234(t)
γ234

= 0,

giving,

N234(t)

N238(t)
= γ234

γ238
= 2.47×105y

4.51×109y
= 0.0055%

As we ignore the small amount of 235U, the percentage abundance of 234U
is 0.0055%.

Problem 12-3
Using eq. (2.22), the energy of the comet per unit mass is given by:

E

m
= −GM�

2a
=
v2

2
− GM�

r
.

Multiplying by −2/(GM�) and inverting gives (inserting numbers in SI units):

a =

(
2

r
− v2

GM�

)−1

=

(
2

1.496× 1011
− 40, 0002

6.674× 10−11 × 1.989× 1030

)−1

= 7.6×1011,

which equals 5.08 AU.

Problem 12-4
(a)

N(R) = No

(
R

Ro

)−ζ
M(R) = N(R)

4πρ

3
R3

pick an arbitrary value of R1. For ζ = 4, we have

M(
R1

2
< R < R1) =

∫ R1

R1
2

No
4πρ

3
r−1Rodr =

4πρ

3
NoR

4
o ln 2

independently of R1, so mass is shared equally among logarithmic intervals in
radius.

(c) The condition is that
∫ R1

R1
2

A(r)dr be independent of R1. Omitting the

constants we have

ζ 6= 3 :

∫ R1

R1
2

r2−ζdr =
r3−ζ

3− ζ

∣∣∣R1

R1
2

=
1− 1

2

3−ζ

3− ζ
R3−ζ

1

ζ = 3 :
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∫ R1

R1
2

r−1dr = ln r
∣∣∣R1

R1
2

= ln 2

independent of R1, so ζ = 3.

Problem 12-10
Set the rotational speed at the equator equal to the speed of a circular orbit

at this distance:
2πR

Prot
=

√
GM

R
=

√
4

3
πGR2ρ

So

Prot =

√
3π

Gρ
≈ 6860 s ≈ 1.9 hours.

Note that the same result may be obtained by setting the centrifugal force
per unit mass equal to gravity at the equation:

Fc =
v2

R
= ω2R =

(
2π

Prot

)2

R,

Fg =
GM

R2
=

4

3
πGRρ,

so (
2π

Prot

)2

R =
4

3
πGRρ

etc. as before.

Problem 12-19
(a) Using the Keplerian approximation,

a =
1

2
(rap + rperi) = 8 AU

Pyears = a
3/2
AU ≈ 22.6 years ≈ 7.15× 108 s.

(b) Assume 1.5 AU is the proper average distance to use for the time period
of solar exposure, and ignore the 1/r2 effects of the flux variation over the orbit
for now. From equation (12.3) . . .

Q = (3× 1017)π
R2

r2
AU

molecules/s

hloss =
Q

4πR2ρ
· Porb

10
· 18

No
cm ≈ 71 cm

where Porb is the period of the comet, ρ is its density, and No is Avagadro’s
number, 6.02× 1023 atoms per mole.
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Problem 13-2
(a) Assuming Mp �Mm1,2

, Equation (13.4) still applies . . .

geff = GMpr̂(
r

a3
− 1

r2
),

but here the center of the moon must be replaced by the center of mass of the
two satellites.

dgeff
dr

= GMp(
1

a3
+

2

r3
) ≈ 3GMp

a3

G(Mm1
+Mm2

)

(Rm1
+Rm2

)2
=

3GMp

a3
(Rm1

+Rm2
).

For Moons of equal sizes and mass:

2GMm

8Rm
3 =

3GMp

a3

Rm = (
Mm

12Mp
)1/3a

=⇒ a =

(
12ρp
ρm

)1/3

Rp ≈ 2.29

(
ρp
ρm

)1/3

Rp

which is identical to the Roche limit except for the constant.
(b) This constant is larger than in the case of a single spherical moon, be-

cause the two bodies are more stretched out, so tidal forces are larger. However,
the magnitude of this effect is not as large as that of deformation of a fluid moon.

Problem 13-3
The Roche limit is given by equation (13.8):

aR = 2.456(
ρp
ρm

)1/3Rp

aR,Jup = (1.89× 105)(10ρm
−1/3)km, aR,Sat = (1.26× 105)(10ρm

−1/3)km,

aR,Ura = (6.75× 104)(10ρm
−1/3)km, aR,Nep = (7.13× 104)(10ρm

−1/3)km

where ρm is in units of kg/m3.
If we think of most satellites as “dirty ice balls”, then ρm ≈ 1000 and

10ρm
−1/3 ≈ 1. Jupiter’s rings span from half the Roche limit value calculated

using the ice ball approximation to nearly that value. Three minor satellites lie
interior to the Roche limit, but the Galilean satellites lie outside twice this value.
Saturn’s main rings extend to just beyond the Roche limit for ice-ball bodies,
while the G-ring and the faint E-ring extend well beyond it. To complicate
matters, there are numerous small satellites near this calculated value. For
Uranus and Neptune there are several moons which reside within the ice-ball
approximation Roche limit, hence the satellite densities may be greater. The
rings for the outer two planets fall well within this aR,ice value. Hence, a single
density “dirty ice ball” model does not seem to suffice.
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Problem 13-7
(a) Neglecting Saturn’s oblateness and applying Kepler’s 3rd law gives

P =

√
4π2a3

GMSaturn

∆P =

√
4π2

GMSaturn
(ao

3/2 − ai3/2) ≈

√
4π2a3

GMSaturn
(
3

2

∆a

a
)

n =
P

∆P
, t = nP =

P 2

∆P

i)

P ≈ 2.373× 104 s, ∆P = 0.445 s, t ≈ 1.27× 109 s ≈ 40 years

ii) ∆a is 100 times larger, thus ∆P is 100 times smaller so

t ≈ 1.27× 107 s ≈ 0.4 years.
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Problem 14-3
(a)

Ptr = (R? +Rp)/a(1− e2) (14.5)

R? = 6.95× 108m.

For Jupiter: RJ = 7.15 × 107 m; aJ = 778.57 × 106 km; eJ= 0.0484; PJ =
0.0987%.

For Venus: RV = 6.05 × 106 m; aV = 108.21 × 106 km; eV = 0.0067; PV =
0.64%

(b) Consider an observer who lies in Jupiter’s orbital plane, and thus views
Jupiter to make a central transit. As it orbits the Sun, the elevation of Venus
is sinusoidal in time and has an amplitude of 2.3◦ = 0.04 radian, so it moves up
and down by 4.344× 106 km, which is 6.24 times the size of the Sun as viewed
from Venus. The fraction of time that the magnitude of the sine function is
below 1/6.24 is arcsin (.16 radians) = 0.16.

Thus, neglecting the small effects of planetary sizes, eccentricities and the
small deviation the observer can be from the plane of Jupiter’s orbit, ∼ 16% of
the observers who view Jupiter to transit will also see Venus to pass in front of
the Sun.

Problem 14-8
(a) The fraction of the Sun’s radiation that is reflected by Earth equals the

cross-sectional area of the Earth multiplied by Earth’s albedo and divided by
the area of a sphere of radius equal to Earth’s orbit:

πR2
⊕

4πr2
⊕
×A⊕ =

0.3

4
× (

6370

1.5× 108
)2 ≈ 1.3× 10−10.

(b) The fraction of the Sun’s total energy emitted by Earth in the thermal
infrared is

4πR2
⊕σT

4
eff,⊕

4πR2
�σT

4
eff,�

,

which can be multiplied by the fraction of the Sun’s luminosity that is emitted
in this wavelength range.

Alternatively, take the ratio of surface areas of the bodies and multiply by the
ratios of temperatures (Rayleigh-Jeans law, eq. 4.4): R2

⊕/R
2
�(T⊕/T�) 10−4 ×

4× 10−2 = 4× 10−6.

(c) The fraction of the Sun’s radiation reflected by Jupiter ≈ 3× 10−9.
Ratio of Jupiter’s luminosity to that of the Sun in thermal IR ≈ 2× 10−4.

Problem 14-13
E ∝ T , dE/dt ∝ T 4 (from eq. 4.11). Therefore, the radiative timescale

E/(dE/dt) ∝ T−3 = 15−3 ≈ 3× 10−4.
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Problem 14-14

(a) The planet intercepts 10−3

1 ×
(

1
0.03

)2

≈ 1.11 times as much energy per

unit surface area as does the Earth.
Scale from Earth’s equilibrium temperature of 255 K:

Teq = 255×

[
10−3

1
×
(

1

0.03

)2
]1/4

= 262 K.

So yes, this object does lie in the habitable zone if we assume that the planet
has a similar albedo to its stars radiation as Earth and a modest greenhouse
atmosphere like Earth’s.

(b) The day side of this planet would continuous light from its star and
be warmer than the planet average while the night side would never be heated
by the star and be very cold. Regions near the terminator (boundary between
day and night) and near the poles might have the most clement atmospheric
conditions and be the “habitable zones” on such a planet.

(c) Atmospheric winds could carry energy from the dayside to the nightside
thus somewhat equalizing the temperature differences. There would still likely
be zones of habitable temperatures but they would likely be larger than in case
(b).

Problem 14-16
(a) Rp = 3 ± 1 R⊕, Mp = 3 ± 1 M⊕, so density is 200 – 3000 kg/m3; the

planet cannot be entirely rocky; if its density is above about 2000 kg/m3, it
could be primarily (compressed) water with a bit of rock; if it is low density it
must have an H/He envelope that occupies a significant fraction of the volume;
the planet’s mass must be primarily elements heavier than He because a planet
this small without heavy elements cannot be held together.

(b) Rp = 1 ± 0.5 R⊕, Mp = 3 ± 1 M⊕, so density 3000 – 80,000 kg/m3, a
very large range that includes large rocky planets with Earth-like composition,
but probably denser with more iron; the lower density range would include
lighter material as well as water; in contrast the denser portion of the range is
unphysical, and indeed any value above around 20,000 kg/m3 is unlikely because
it requires a high abundance of extremely dense elements that are rare and aren’t
consistent with any other observations

(c) Rp = 12 ± 2 R⊕, Mp = 300 ± 100 M⊕, so this is a gas giant with most
of the volume occupied by H/He; the measurements are not accurate enough to
tell whether or not it contains a significant amount of heavier elements

(d) Rp = 3 ± 1 R⊕, Mp = 30 ± 10 M⊕, so density 2000 – 20,000 kg/m3,
i.e., not well constrained; probably H/He occupies most of the volume, but at
the high density and small size end of the range it could be a (compressed)
water-rich planet; by mass it must be mostly elements heavier than He in any
case

(e) Rp = 2±0.2 R⊕, Mp = 10±1 M⊕, so density 5000 – 9000 kg/m3, perhaps
a super-earth with close to Earth-like composition, but likely with substantially
more water or a bit of H/He
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Problem 15-3
(a) Circular velocity:

vcirc =

√
GM�
R1AU

≈ 30 km/s.

By the virial theorem, the total mechanical energy for the molecule on a
circular orbit is just equal to the negative of its kinetic energy:

Etotal = −1

2
mH2

v2
circ

mH2
≈ 2× 1.673× 10−27 kg

Etotal ≈ 3× 10−14 J.

(b) Temperature increase:

H = cpmH2∆T, cp = 14340 J/kg K

∆Eheat =
1

2
mH2

v2
circ = cpmH2

∆T

∆T =
v2
circ

2cp
≈ 3.1× 104 K.

Problem 15-4
(a) The gas in a protoplanetary disk is also in orbit, albeit with a velocity

slightly slower than Keplerian because it is partly supported by a gradient in
pressure.

ngas ≈
√
GM�
r3

(1− η), η ≈ 5× 10−3

∆v =

√
GM�
R1AU

− ngas ·R1AU

∆v ≈ 149 m/s

Vswept = ∆v · (3.15× 107 s) · πR2 ≈ 4.7× 109 · πR2 m

Mswept = ρgas × V ≈ 4700 · πR2 kg/yr.

(b) Size of particle encountering its own mass in gas in one orbit:

4

3
πR3 · ρparticle = 4700 · πR2 kg

R =
4700 · 3

4 · ρparticle
≈ 1.17 m.

Problem 15-6
For ordered growth Fg = 10 is constant, as is the rate of growth of the

planetary radius, to first order. . .

σρ =
MNep

π(352 − 252)(1.5× 1011)2
≈ 1.02× 1026

4.24× 1025
≈ 2.4 kg/m2
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and assuming ρp =< ρNep >= 1640 kg/m3,

dR

dt
=

√
3

π
σρ

√
GM�
303

AU

· 10

4ρp
≈ 4.5× 10−12 m/s

tg ≈
(
dR

dt

)−1

×RNep = 5.4× 1018 s ≈ 1.7× 1011 years

which is much longer than the Solar System age, so the process must not be
ordered growth at or anywhere near Neptune’s current location, especially since
this provides only a rough lower limit.

Problem 15-7
Planets would be smaller, but there would be more of them. Growth would

stop at smaller sizes because smaller mass planets could not perturb one another
into crossing orbits. In the terrestrial planet region, the number of planets would
increase to

√
2 × 4 ≈ 6. Quantitative estimates are more difficult for the giant

planets, but it is possible that there would be no Jupiter-like planets, thus
several smaller planets and likely no asteroid belt.

Problem 15-12
Imagine a small volume V inside the center of the asteroid. The energy

required to initiate melting in this volume is that required to raise its temper-
ature up to the melting point from a starting point of, say, 100 K: Emelt =
1700 K×V cpρ. Assuming ρ ∼ 3000 kg m−3 and V = 1 m3 this is about 4×109 J
(for full melting, we would also need to include energy to overcome the latent
heat of fusion).

The total energy produced by radioactive decay in our volume over a time
τ is Etot = r0V

∫ τ
0
e−tkdt = (V r0/k)[1 − e−τk]. If there were no loss of energy

we could just equate Emelt = Etot and solve for τ . Neglecting energy loss for
the moment (which is equivalent to considering a very large asteroid), enough
energy is generated by radioactive decay at the initial rate to melt the material
in 4× 1012 seconds, or about 130,000 years. Accounting for the drop off in heat
generation over time extends this a bit, but not much, since it is much shorter
than the decay time of 26Al.

We want the timescale for conduction to be longer than this radioactive
heating timescale so that conduction is less important than energy production.
The heat flux from conduction is given by (4.18): Q = −KT∇T . Setting
∇T ∼ −1700 K/R and using the given value of KT we know Q for a given
R. Since we are interested in the smallest asteroid that can show some melting
we can assume this heat flux is carried through a small cross sectional area
encircling our volume V near the center, so the energy carried away by diffusion
over time τ is Ediff ∼ 1 m2×Qτ . We can then just set Ediff/Emelt < 1 and solve
for R using τ = 1/k.
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Problem 16-2

There are many reasons. A few key ones are:

1. Carbon has the unique ability to form long chains of complex molecules
that have a high degree of stability. Stable complex molecules are required to
build sugars, to build DNA, to build RNA, to build amino acids, proteins, cells,
and finally, to build all living organisms on Earth.

2. Carbon can make 4 bonds, allowing for complex branching and linking
into chains.

3. The C-H and C-C bands are of comparable strength.

4. Carbon is common, and even organic compounds are observed in many
environments in the Universe, and this abundance makes them a good candidate
for the building blocks of life.

Problem 16-3
(a) We can write the equilibrium temperature as

T 4
eq =

1−Ab

16σ

L?
πr2

.

Solving for r in units of AU we have

r =

(
1−Ab

16πσ

L?
T 4

eq

)1/2

≈ 77, 200

(
(1−Ab)

T 4
eq

L?
L�

)1/2

AU.

We can then set Teq to any value to solve for the equivalent r. For 273 and 373
K we find rAU = 0.86 and 0.46 AU.

(b) Venus is the only planet in the Sun’s habitable zone by this definition.
(c) The greenhouse effect increases the surface temperature for a given Teq,

thus moving the habitable zone outwards. There are many other neglected
factors including including the characteristics of the planets orbit (highly eccen-
tric?), rotation (planetary obliquity), composition (amount of oceans), latitudi-
nal variations, etc. Many answers are possible.

Problem 16-9
If the Sun suddenly became twice as bright as it is at present, the Earth

would intercept slightly more solar radiation than Venus does at present. Earth’s
temperature would increase substantially. More water would evaporate, increas-
ing the greenhouse effect, eventually leading to a runaway greenhouse with an
atmosphere that was very thick and composed primarily of water vapor. The
oceans would evaporate and the surface temperature would rise to the melting
point of rock. Hydrogen would escape to space, and eventually the Earth’s
water would be lost and the Earth would cool a bit to a state comparable to
present-day Venus.
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Problem 16-12
(a) Vspherule = 4/3 πR3

Rspherule = 100 µm = 0.1 mm
Vspherule= 4,186,666 µm3 = 4.19× 10−3 mm3.

(b) Depends on how closely packed the layer is:
Rhombohedral packing is the most compact arrangement in space of uniform
spheres (atoms and molecules in mineral crystals, or grains in sedimentary rocks)
that results in a structure having no more than 26% porosity whereas the loos-
est packing, cubic packing, shows a porosity of 47%. Assuming rhombohedral
packing with a porosity of 26%, 2.22 mm3 of the 3 mm3 would be occupied by
spherules.
Vspherule = 4.19× 10−3 mm3

Number of spherules = 530.
(c) cross-sectional area of a spherule

Aspherule = πR2 = 3.14× 10−2mm2.

(d) A2
spherules in 1mm = Aspherules ∗Xamount of spherules in 1mm2

Aspherules in 1mm2 = 3.14× 10−2mm2 × 530 = 17 mm2.
Assumptions:

Spherules are opaque

optical depth = 17mm2

1mm2

Optical depth (around 17) means you have to remove 17 particles at any given
point to see light coming through. The atmosphere after the impact at the
K/T boundary was full of these small, opaque spherules and little light came
through.

Problem 16-19
(a) We can write the equilibrium temperature as

T 4
eq =

1−Ab

16πσ

L

R2
.

Setting R = 1 AU and L = L� and Ab = 0.29 we have Teq = 255 K. Thus
288− 255 = 33 K is generated by the greenhouse effect.

(b) Now Teq = 255×
(

0.45
0.71

)1/4
= 227 K. Adding in the same 33 K greenhouse

effect brings the surface temperature to 260 K.
(c) If the global surface temperature ever fell well the freezing point, the

ice caps would grow and the mean albedo would increase. With an increasing
albedo, more sunlight gets reflected and the temperature drops. This process
will finally lead to the formation of SnowBall Earth (SBE).

But even for SNE, the internal heat of Earth (due to radioactive decay, core
solidification, etc.) will find its way out through volcanic activity, which injects
CO2 into the atmosphere. Since during the process of SBE almost no weathering
is occurring, and the sequestration of of CO2 would be extremely low as well,
the atmosphere will continue to accumulate CO2. When the atmospheric CO2

abundance increases to a level that is enough to generate a sufficiently enhanced
greenhouse effect, ice will start melting. Once the first ice is melted, the planet’s
albedo will decrease and the Earth could escape the snowball.
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